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ABSTRACT: In this article, we investigate the methods that can realize
automatic target recognition and tracking by exploiting signal distribu-

tion of radar cross section (RCS) with frequency modulated continuous

wave (FMCW) radar. In doing this we use the real RCS data measured

from the short-range FMCW vehicle radar. We estimate the continuous
valued degree of freedom and the mean of RCS distribution using maxi-
mum likelihood estimation (MLE) assuming that RCS follows gamma

distribution. The experiments with real radar verify that parameterized
gamma distributions for three targets of man, vehicle, and drone closely
follow the empirical distributions. Then, we apply maximum a posteriori

criterion (MAP) for target recognition. The average recognition proba-
bilities for man, vehicle, and drone using MAP are 85%, 100%, and

92%, respectively. Since the vehicle has distinct RCS and thus perfectly
recognizable, we apply a support vector machine (SVM) hoping to better
classify the man and the drone. The man is recognized with similar

accuracy, but the drone is not due to the lack of training samples, of
which constraint is imposed by real implementation and experiment.
VC 2016 Wiley Periodicals, Inc. Microwave Opt Technol Lett 58:1745–

1750, 2016; View this article online at wileyonlinelibrary.com. DOI

10.1002/mop.29901

Key words: FMCW short-range radar; target recognition; RCS; KS-dis-
tance; maximum-likelihood

1. INTRODUCTION

Radar has been used to recognize targets and to estimate the

distance from the target by analyzing reflected radar signal.

Research on radar has been mainly for military when it is

needed to notify the location of enemy flights or vessels from a

long distance [1,2]. Previous research of target recognition took

advantage of radar cross section (RCS) values reflected from the

target. In doing this, Swerling made a statistical model based on

chi-square distribution [3] to discern objects, typically either air-

planes or ships depending on the degree of freedom, which is,

either 2 or 4, respectively. In this regard, RCS values have been

usually measured by a long-range pulsed radar. Recently, how-

ever, radar is used for other than military purposes; for example,

short-range radar is located on the front or the rear of autono-

mous unmanned vehicles to detect, recognize, track, or dodge

targets. Since frequency modulated continuous wave (FMCW) is

simpler than other radar systems, it is easier to apply additional

techniques such as digital beamforming [4]. Accordingly, it

becomes important to analyze signal from short-range FMCW

radar for target recognition [5,6].

In this article, we investigate several target recognition meth-

ods. Assuming that RCS distribution follows gamma distribution

that is a generalized version of chi-square distribution [7], we

estimate the continuous valued parameters that specify the RCS

Figure 1 Shape factor and mean plot. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com]
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distribution using the maximum likelihood estimation (MLE).

Then we first apply Kolmogorov-Smirnoff (KS) distance for target

recognition but find KS distance not effective in discerning man

and drone since their distributions are similar. Hence, we apply

maximum a posteriori (MAP) criterion for target recognition and

compute the probability that the unknown target would be a spe-

cific object. Our results show that MAP is good for recognizing

man, drone, and vehicle while a support vector machine (SVM)

may not work well under the limited number of training samples.

This paper is organized as follows. In Section 2, we present

gamma distribution for RCS modeling. In Section 3, the param-

eter estimation with MLE is derived and target recognition

methods based on MAP and SVM are presented, respectively.

The experiments and analysis of measured data are followed in

Section 4, and the conclusion is provided in Section 5.

2. RCS DISTRIBUTION MODEL

RCS can represent the characteristics of target surface; the radar

receives the same reflective force coming out from the target

when the energy is equally distributed on the target’s surface.

The RCS r of the target is defined as

r5 lim
R!1

4pR2 jEsj2

jE0j2
(1)

where R is the distance between radar and target, Es is the

spreading intensity reflected from the target, and E0 is the

spreading intensity exposed to the target from radar. Traditional

common targets are airplanes, vehicles, vessels, and grounds.

Typically, RCS value is roughly proportional to the size of the

target. In this study, however, targets are similar in size when

seen by radar, and also significantly smaller than traditional tar-

gets, which makes target recognition challenging.

RCS is typically modeled by chi-square distribution (Swel-

ling model 1–4), log-normal distribution, gamma distribution,

etc. Among these, we assume that the distributions of our targets

(man, drone, and vehicle) follow gamma distribution with

parameter h5 l; mð Þ,

P xjhð Þ5 m

m21ð Þ!l
mx

l

� �m21

exp 2
mx

l

� �
(2)

where l is the mean and m is the shape factor. Note that 2 m is

so called the degree of freedom. Specifically, Swerling model

discerns targets based on the degree of freedom, e.g., 2 for air-

planes and 4 for ships using chi-square distribution, which is a

special case of gamma distribution.

Figure 2 (a) RCS of man: empirical distribution (dashed line) and

estimated distribution (solid line); (b) RCS of vehicle: empirical distribu-

tion (dashed line) and estimated distribution (solid line); (c) RCS of

drone: empirical distribution (dashed line) and estimated distribution

(solid line). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com]

Figure 3 CDF of empirical and estimated RCS. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com]
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3. TARGET RECOGNITION

3.1. Parameter Estimation of RCS Distribution Using MLE
Given the measured RCS vector x5 x1; x2; . . . ; xdð Þ where d
is the number of chirps in a single burst, we estimate H5

h1; . . . ; hdð Þ using MLE. To find out H that maximizes the

likelihood P xjHð Þ or its log-likelihood logP xjHð Þ given x, we

assume that xi is an independent random variable [8], and the

likelihood function of x with H is given by

P xjHð Þ5
Yd

i51

mi

mi21ð Þ!li

mixi

li

� �mi21

exp 2
mixi

li

:

� �
(3)

Then, we find H that maximizes the log likelihood,

L Hð Þ5logP xjH:ð Þ (4)

Since one burst is very short, it is reasonable to assume that the

statistics of RCS does not change in a burst, i.e., xi, i51; . . . ; d
are identically distributed, and thus we assume hi5h for all i.
Then, by taking the derivative of L with respect to l, we find l
that satisfies @L

@l 50. As one might expect, l turns out to be the

average RCS of the burst, i.e.,

l5
1

d

Xd

i51

xi: (5)

Similarly, we find m that satisfies @L
@m 50. Due to space limita-

tion, we omit the derivation, but one can show that m is the

solution of the following equation,

v mð Þ52
1

d

Xd

i51

log
xi

l

� �
(6)

where v mð Þ5log mð Þ2 @
@m logC mð Þ and C mð Þ is the gamma func-

tion. Then, Eq. (6) needs be numerically solved using root-

finding algorithms, e.g., the bisection method.

3.2. Target Recognition Using MAP Criterion
Next step is to recognize unknown target given x. In doing this we

take a probabilistic approach. That is, instead of asserting what the

target is, we compute the probability that x corresponds to some spe-

cific target. It can be done by using MAP criterion. Let j 2 I denote

a target and I denote a collection of all known targets. Using Bayes’

rule, the probability that x would be a target j is computed by

P hjjx
� �

5
P xjhj

� �
P hj

� �
p xð Þ : (7)

Note that P hj

� �
is a priori probability that a target j would

appear, which can be learned during online operation. In case P
hj

� �
is unknown, it is reasonable to assume that each target

appears equally likely, which makes the MAP probability simply

the normalized likelihood

P hjjx
� �

5
P xjhj

� �
P

j P xjhj

� � : (8)

In this case, MAP-based target recognition boils down to maxi-

mum likelihood (ML) based target recognition except that it

gives target probability rather than asserting the target. Finally,

the unknown target is declared as j�5argmaxj2IP hjjx
� �

with

probability P hj� jx
� �

.

3.3. Target Classification Using Support Vector Machine (SVM)
In addition to MAP, we also apply SVM to classify targets

based on training data. Let xk and yk, k51; . . . ; M denote

training RCS vectors and the corresponding target types. Then,

using SVM, which is a supervised learning technique, we find

the hyperplane w that separates objects into two groups (i.e.,

either labeled yk51 or 21) while maximizing the distance

between the closest xk and the hyperplane:

min
1

2
wTw (9)

s:t: yk wTxk1b
� �

� 0; for k51; . . . ; M (10)

where w is the normal vector of the hyperplane, wTx1b50, b is

the bias term where jwTx1bj51, and M is the number of training

vectors. In doing this, we use a kernel function U xð Þ to perform a

non-linear classification, i.e., xk is replaced by U xkð Þ in Eq. (10).

4. EXPERIMENTAL RESULTS WITH REAL FMCW RADAR

4.1. Experiment Setup
Unlike traditional electromagnetic simulation-based approach,

we perform experiments with real FMCW radar implementation

TABLE 1 KS-Distance Between Test Data and Training Data

Test burst

Training by man Training by vehicle Training by drone

Test date type Test date type Test date type

Man-1 Vehicle-1 Drone-1 Man-1 Vehicle-1 Drone-1 Man-1 Vehicle-1 Drone-1

1 0.272 0.974 0.366 0.947 0.489 0.842 0.193 0.916 0.193

2 0.131 0.958 0.195 1.000 0.380 1.000 0.211 0.907 0.151

3 0.151 0.937 0.185 0.992 0.626 0.991 0.261 0.928 0.261

4 0.443 0.889 0.252 1.000 0.512 0.989 0.371 0.838 0.155

5 0.370 0.970 0.420 0.883 0.567 0.720 0.480 0.789 0.260

6 0.139 0.928 0.147 0.930 0.262 0.836 0.408 0.822 0.180

7 0.286 0.974 0.408 0.975 0.361 0.941 0.199 0.915 0.128

8 0.216 0.872 0.084 0.955 0.430 0.877 0.168 0.915 0.168

TABLE 2 The Target Recognition Result With KS-Distance

Test target

Training

by man

Training

by vehicle

Training

by drone

Man-1 75% 0% 25%

Man-2 93.75% 0% 6.25%

Man-3 37.5% 0% 62.5%

Man-4 100% 0% 0%

Vehicle-1 0% 0% 0%

Drone-1 18.75% 0% 81.25%
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using parabolic antenna with the operating frequency at 76.4–

76.6 GHz. Detailed radar specification is as follows. The band-

width of waveform, BFM is 200 MHz, the number of range bins,

NFFT is 256, the number of chirps per one burst, Nchirp is 119,

and the duration of one chirp, T is 33 msec. One of the advan-

tages of FMCW radar is its inherent capability of computing the

distance as well as the speed of moving object by applying 2-

dimensional fast Fourier transform (FFT) of the FMCW beat fre-

quency [9]. However, in processing FFT, main lobe that obtains

the received target signal is not significantly distinguished with

side lobe, and thus we reduce the side lobe and amplify the main

lobe by applying Hanning window [10]. Then 1-d FFT is per-

formed to obtain the distance from the target [11].

Our targets in experiments are man, drone, and vehicle. Each

target moves slowly around within the distance from 5 to 10 m

from the radar. Based on the radar specification, one burst of

RCS vector x has 119 chirps, and thus the maximum of d is

119. We measure totally 16 bursts. Due to the radar hardware

processing time, the total number of bursts is limited by 16 in

this experiment. Note that one chirp generates one RCS value,

and thus, totally we have 119 3 16 5 1904 RCS values per

target. We use the first half (952 RCS values) as a training set

for estimating parameter h when using MAP and for construct-

ing support vectors when using SVM, respectively. The test sets

are made from the second half of RCS values.

4.2. Results
4.2.1. RCS Parameters Estimated by MLE. We have four sce-

narios for the target of man. The case of man-1 is when a per-

son walks without swinging arms. The case of man-2 is when

he walks through swinging arms widely. The case of man-3 is

when he runs. The case of man-4 is when he walks while rotat-

ing. We have a single scenario for vehicle and drone, respec-

tively. The estimated parameters h5 l; mð Þ for the targets are

shown in Figure 1. The estimated mean, l; from man training

data is 0.451, from vehicle training data is 33.90, and from

drone training data is 1.138. The value of estimated shape fac-

tor, m, from man training data is 0.845, from vehicle training

data is 1.232, and from drone training data is 0.522. As can be

seen, the vehicle has quite distinct RCS mean l and the shape

factor m, which makes it easy to discern the vehicle from others.

By contrast, the man and the drone have similar values of l and

m, which makes target recognition challenging.

4.2.2. RCS Distribution. Figure 2 shows the empirical RCS

distributions (dashed line) and its estimation by gamma distribu-

tions (solid line) for man, vehicle, and drone, respectively. We

see that gamma distribution closely follows the measured distri-

butions for all three types of targets. Figure 3 shows the meas-

ured cumulative density functions (CDFs) of three targets

(dashed line) and its estimated CDF (solid line). We also see

that the estimated distributions closely follow the empirical

CDFs. To quantify the distribution estimation accuracy we com-

pute the KS-distance between the empirical and estimated distri-

butions. The KS-distance dKS for two CDFs F xð Þ and G xð Þ is

defined as dKS5 maxx jF xð Þ2G xð Þj. Tables 1 and [2] show the

result. One may think that targets can be recognized using KS-

distance. To explore the possibility we cross-compare the KS-

distances of all possible pairs of the estimated distributions

obtained from training sets and empirical distributions obtained

from each burst in test sets. Table 1 shows one example of the

calculated KS-distance between trained data’s estimated proba-

bility density function (PDF) and test data’s empirical probabil-

ity mass function (PMF). Table 2 is the result of target

classification accuracy using KS-distance. As shown in Table 2,

it is hard to use KS-distance to reliably recognize the target; for

example, man-3 is miss-classified as a drone with 62.5%.

Figure 4 (a) Probability of man: Target probabilities for various input

vectors of man-1,2,3,4, drone-1, and vehicle-1; (b) Probability of vehicle:

Target probabilities for various input vectors of man-1,2,3,4, drone-1, and

vehicle-1; (c) Probability of drone: Target probabilities for various input

vectors of man-1,2,3,4, drone-1, and vehicle-1. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com]
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4.2.3. MAP Based Target Recognition. Now we use MAP for

target recognition as explained in Section 3.2. Since x is either

from man-1, 2, 3, 4, vehicle or drone, we calculate P hjjx
� �

for

each j 2 I for six different test vectors x. In doing this, to

investigate the appropriate dimension of input vector x, we also

vary d, i.e., the size of x from 17 to 119. Figure 4(a) shows the

probability that the input vector x would be a man. We see that

man-2 and man-4 exhibits nearly 100% recognition probability

when using one total burst as an input vector, which verifies

that the radar hardware design of 119 chirps per burst is well

chosen. However, as expected from Figure 1 and Table 2 where

the distribution of man-1 and man-3 are deviated from the typi-

cal man case, man-1 and man-3 do not exhibit high recognition

probabilities. We find the reason from inaccurate distance esti-

mation for man-1 and man-3, which may come from imperfect

FMCW radar implementation and hardware processing. The esti-

mated speeds of man-1 and man-3 are unreasonably high, which

implies that the distance estimation is not accurate. We expect

that when new FMCW radar is developed, distance inaccuracy

shall be improved. Figure 4(b) shows the probability that the

input vector x would be a vehicle. Perhaps it is not surprising to

see that vehicle is recognized 100% even with a small d, e.g.,

17. Figure 4(c) shows the probability that the input vector x

would be a drone. We see that the drone can be recognized with

more than 90% probability when full one burst is used.

4.2.4. SVM Based Target Recognition. We further extend our

experiment using SVM. In applying SVM for target recognition,

we investigate several types of kernel functions including linear,

polynomial, and radial basis functions (RBF). Since the field-

measured RCS for training set is limited, sophisticated kernel

functions may have an overfitting problem. We find that the

RBF kernel function is a good fit. When using the RBF kernel

function, we also apply 10-fold cross validation. Note that

unlike MAP, SVM only classifies the targets, and thus we com-

pute the classification accuracy, not the target probability, by

counting the number of correct classifications. In addition, even

though there are three types of targets, we only apply SVM to

discern the man and the drone because the vehicle is so distinc-

tive. The training data and test data are same as MAP. The

result of SVM is shown in Figure 5. As can be seen, classifica-

tion accuracy of man is similar to the result of MAP. However,

the result of drone, as seen in Figure 5(b), is not as good as that

of MAP. The reason may come from that input vector dimen-

sion is high while the number of training samples is not

sufficient.

5. CONCLUSION

In this article, we investigated methods for target recognition

with real target RCS data measured in the field and extracted

from short range FMCW radar hardware. We applied MLE to

estimate the parameters of the empirical distribution of target

RCS assuming gamma distribution. We calculated the KS-

distance between estimated distribution and empirical distribu-

tion and verified that gamma distribution well captures the

empirical RCS distribution. Then, we applied the MAP criterion

for target recognition and found that MAP can effectively recog-

nize targets in the real field with high probability, e.g., 85%,

100%, and 92% for man, vehicle, and drone, respectively. In

addition, we applied SVM for separating the man and the drone

and found that MAP shows better performance than SVM in the

lack of the training samples. This is our initial work with real

FMCW radar, and the future plan is to perform extended experi-

ments when a new version of array-based FMCW radar hard-

ware is developed with shorter processing time so that more

RCS data are obtainable.
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ABSTRACT: A fully CMOS integrated low TX noise UHF RFID digital

transmitter with tunable directional coupler is proposed. The transmitter
decreases the AM noise density to 2144.6 dBc/Hz at 10 kHz offset by
eliminating noisy conventional analog components and optimizing LO

chain. The tunable transformer-based directional coupler which is feasi-
ble for CMOS integration exhibits high isolation performance of 255

dB over the entire band. The transmitter with quadrature DPA structure
supports DSB/SSB/PR-ASK modulation, and with the directional coupler,
it achieves 22.8 dBm peak power with drain efficiency of 37.8%. VC 2016

Wiley Periodicals, Inc. Microwave Opt Technol Lett 58:1750–1756,

2016; View this article online at wileyonlinelibrary.com. DOI 10.1002/

mop.29900

Key words: : UHF RFID; CMOS digital transmitter; CMOS directional
coupler; TX noise; self-correlation

1. INTRODUCTION

RFID operating in the UHF band from 840 to 960 MHz is a

remote autoidentification technology characterizing long recog-

nition range, anticollision characteristics, high data rate, and

small antenna size compared to barcode and near-field inductive

coupled RFID system. Nowadays, Internet of Things (IoT)

which is a huge network has been expanding its application sce-

narios rapidly with a dramatic market growth. Based on the

technical features, UHF RFID technology is addressed to be one

of the most important parts of IoT infrastructure. In IoT-

oriented RFID network, an ultra-remote reading range up to

50 m in open air will lead to the emergence of many applica-

tions such as smart home, smart city, long distance vehicle iden-

tification, large warehouse management, etc. Besides, UHF

RFID reader, which plays a communication node in IoT network

is evolving towards high integration, low cost, and low power

for application diversified requirement. It is a competitive way

to integrate a large portion of a RFID reader in CMOS technol-

ogy, including a power amplifier and a directional coupler.

Reader transmitter (TX) leakage noise is the most serious

issue that limits the reading range. Different from other wireless

communication systems, UHF RFID reader in nature is a minia-

ture radar system, which transmits and receives signals at the

same frequency. Due to the limited performance of couplers,

RX sensitivity will be deteriorated dramatically by leakage

noise, which includes phase noise and amplitude modulated

(AM) noise caused by random phase and amplitude perturbation,

respectively. The phase noise of leakage is usually cancelled to

a large extent by self-correlation using the same LO for both

TX path and RX path [1–5], but only correlated phase noise

between LO signal and the leakage signal can be cancelled. TX

AM noise that cannot be cancelled by correlation is produced

mainly by the analog baseband, up-mixer, and PA driver in con-

ventional systems as shown in Figure 1(a). Readers implemented

in SiGe BiCMOS [1] could achieve a low TX noise. In Refs. 2

to 6, CMOS reader transmitters have been reported, but the AM

noise of conventional TX architecture is still the reading range

limitation. In our previous work [3], enlarging equivalent input

magnitude of continuous wave (CW) signals in baseband is

Figure 1 (a) Conventional UHF RFID reader transmitter. (b) Proposed

UHF RFID reader system with low TX noise digital quadrature transmit-

ter. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com]

Figure 2 Forward and return link budgets in RFID system with the

improvement of tag sensitivity. A reader TX power of 30 dBm, reader

antenna gain of 6 dBi, tag antenna gain of 2 dBi, polarization mismatch

loss of 2 Db are assumed. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com]
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